skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brodie, Callum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geometric transitions between Calabi-Yau manifolds have proven to be a powerful tool in exploring the intricate and interconnected vacuum structure of string compactifications. However, their role in N=1, four-dimensional string compactifications remains relatively unexplored. In this work we present a novel proposal for transitioning the background geometry (including NS5-branes and holomorphic, slope-stable vector bundles) of four-dimensional, N=1 heterotic string compactifications through a conifold transition connecting Calabi-Yau threefolds. Our proposal is geometric in nature but informed by the heterotic effective theory. Central to this study is a description of how the cotangent bundles of the deformation and resolution manifolds in the conifold can be connected by an apparent small instanton transition with a 5-brane wrapping the small resolution curves. We show that by a “pair creation” process 5-branes can be generated simultaneously in the gauge and gravitational sectors and used to describe a coupled minimal change in the manifold and gauge sector. This observation leads us to propose dualities for 5-branes and gauge bundles in heterotic conifolds which we then confirm at the level of spectrum in large classes of examples. While the 5-brane duality is novel, we observe that the bundle correspondence has appeared before in the target space duality exhibited by (0, 2) gauged linear sigma models. Thus our work provides a geometric explanation of (0, 2) target space duality. 
    more » « less
  2. He, Yang-Hui; Ge, Mo-Lin; Bai, Cheng-Ming; Bao Jiakang; Hirst, Edward (Ed.)
    Vector bundle cohomology represents a key ingredient for string phenomenology, being associated with the massless spectrum arising in string compactifications on smooth compact manifolds. Although standard algorithmic techniques exist for performing cohomology calculations, they are laborious and ill-suited for scanning over large sets of string compactifications to find those most relevant to particle physics. In this article we review some recent progress in deriving closed-form expressions for line bundle cohomology and discuss some applications to string phenomenology. 
    more » « less
  3. A bstract D7-brane moduli are stabilized by worldvolume fluxes, which contribute to the D3-brane tadpole. We calculate this contribution in the Type IIB limit of F-theory compactifications on Calabi-Yau four-folds with a weak Fano base, and are able to prove a no-go theorem for vast swathes of the landscape of compactifications. When the genus of the curve dual to the D7 worldvolume fluxes is fixed and the number of moduli grows, we find that the D3 charge sourced by the fluxes grows faster than 7/16 of the number of moduli, which supports the Tadpole Conjecture of ref. [1]. Our lower bound for the induced D3 charge decreases when the genus of the curves dual to the stabilizing fluxes increase, and does not allow to rule out a sliver of flux configurations dual to high-genus high-degree curves. However, we argue that most of these fluxes have very high curvature, which is likely to be above the string scale except on extremely large (and experimentally ruled out) compactification manifolds. 
    more » « less